Comètes et Planète X (suite)
Cet article fait suite à un autre qui posait la question de la présence d'un corps gravitationnel massif à 120° d'inclinaison par la présence d'un excès de densité des comètes à trajectoire hyperbolique. Les tours et détours de cette recherche semblent conduire à des chemins inattendus...
Vous vous souvenez, pour ceux qui avaient lu l'article précédent, que j'en étais arrivé à constater, suivant des paramètres orbitaux qui ne disaient rien de la distance ni de la position, un excès de densité cométaire provenant d'une région circulaire du ciel. L'ensemble des valeurs médianes obtenues étant résumées à la fin de l'article précédent:
- Inclinaison ~ 120°
- Longitude du noeud ascendant Ω ~ 62.3°
- Argument du perihelion ω ~ 175°
Ces valeurs rejoignant celles de l'article de J.B Murray.
Les choses devenaient intéressantes, encore fallait-il pouvoir les vérifier ! Et là, le "hic" : n'étant pas un spécialiste du sujet, et n'ayant que trop peu de temps à investir dans des ouvrages, je me suis dit que mon plus court chemin serait la simulation.
Sommaire
Densité du flux cométaire suivant l'inclinaison
Avant cela toutefois, ma première démarche a été de dériver la fonction de répartition qui jusqu'alors présentait le nombre cumulé de comètes suivant l'inclinaison. Cette fonction est particulièrement intéressante car c'est elle qui montre pour les comètes à trajectoire hyperbolique, une extinction de leur nombre lorsque l'on se rapproche du plan de l'écliptique, et un accroissement notable autour des 120°:
Dériver cette fonction permet en effet d'obtenir une lecture directe du flux cométaire en fonction de l'inclinaison, à contrario, le graphe ci-dessus se lit en cumul. Pour ce faire, je suis parti de l'équation par partie que j'avais utilisé pour modéliser la répartition (tracée en jaune). Celle-ci est constituée de deux morceaux d'arcs d'une même ellipse de paramètres a=3, b=2 (je vous passe les détails, mais ces paramètres avaient été déterminés par approximations successives et réduction d'erreurs, il y avait peut-être de meilleures fonctions d'approximation basées sur des fonctions de puissance ou d'exponentielle: je suis preneur). De là, l'expression de la dérivée s'obtient assez naturellement et le graphe de densité est le suivant:
Retrouver la fonction de densité du flux cométaire
A partir de là, il était légitime de se demander quel modèle constitué :
- d'un soleil,
- d'un corps Px, et,
- d'un nuage cométaire,
pouvait permettre de créer une telle fonction de densité de flux ?
Autrement dit, comment, une éventuelle planète X qui traverserait un nuage cométaire situé aux confins du système solaire pourrait nous "arroser", de façon que de la terre nous observions une telle répartition ?
Il me semble que deux principaux types de facteurs doivent être considérés afin de pouvoir reconstituer une telle fonction de densité :
1. La structure du nuage cométaire
La structure du nuage cométaire traversé à savoir: sa distance, épaisseur, fonction de densité... Si nous considérons qu'il s'agit du nuage d'Oort, les données existantes à son sujet, sont malheureusement que peu fiables à ce jour. Il est par exemple possible de considérer que la limite interne de ce nuage est située à 30 000 Unités Astronomiques (UA) et que sa limite externe est à 150 000 UA formant une coquille épaisse de 120 000 UA autour du système solaire. L'autre point c'est la fonction de densité des comètes suivant la distance de ces limites interne/externe qui peut être de différents types: loi normale centrée/réduite, loi normale asymétrique, constante par parties (à savoir, densité homogène importante en dedans, et homogène faible en dehors), linéaire par parties, etc. : il y a de quoi s'amuser (!)
2. Les paramètres orbitaux du corps traversant
L'autre aspect, concerne la trajectoire de ce corps: son orientation va déterminer le flux renvoyé vers le soleil. De façon intuitive, nous percevons bien que l'orientation qu'aura ce corps vis à vis du soleil sera importante:
- dirigé vers le soleil, le flux cométaire qu'il projettera vers nous sera intense,
- allant en direction inverse, nous devrions être relativement "protégés", néanmoins un reliquat arrivera toujours jusqu'à nous.
En toute logique en croisant 1. et 2. nous devrions pouvoir reconstituer la fonction de densité. La plus grande difficulté soulevée me paraissant être celle de l'évaluation du flux cométaire projeté par un corps massif traversant un champ de petits corps: à quoi pouvait bien ressembler une telle projection ?
Simulations d'un corps massif traversant un champ cométaire homogène
Ce genre de simulation a certainement déjà réalisée car elle est très simple. Le programme que j'ai écrit ci-après en php est relativement compact. Il utilise les paramètres suivants:
#mX masse de la Px, en masses de la terre #vX vitesse de la Px, (m.s-1) #aXh direction horizontale de la Px, (°) #aXv direction verticale de la Px, (°) #nb nb de petits corps (comètes) pris pour la simulation #UAPix Facteur d'échelle espace, UA / (pixels*niveaux de zoom) #kT Incrément de temps à chaque Itération de la simulation #It Nombre d'itérations de la simulation #zF niveaux de zoom du graphique en multiples de 255 pixels
Mise à part la durée des itérations, j'ai rapporté ces paramètres à des échelles de temps et d'espace suffisamment grands afin que l'observation soit compatible avec l'échelle du système solaire. Je n'ai pas mis ce programme en ligne car couteux en calcul machine, cependant si vous voulez vous amuser, les sources des programmes sont donnés ci-après (remplacer .txt par .php):
Le programme prévoit l'axe z, j'ai commenté les lignes concernées pour gagner du temps de calcul, (ce n'est vraiment rien à rajouter). A ce stade, je pense que les simulations qui vont suivre sont déjà relativement éloquentes.
La simulation ci-dessus, présente les paramètres par défaut du programme: simulation sur 1000 mois pour un corps de la masse de la Terre allant en ligne droite au travers d'un champ cométaire. Les petits corps n'ont pas de vitesse initiale. Le temps de calcul associé est d'une dizaine de secondes. Ce n'est pas très spectaculaire, on observe que le corps central a avancé de 8 pixels, (trajectoire jaune) et autant d'UA. Certains corps cométaires qui étaient trop près ont été éjectés à grande vitesse.
Première simulation
La première simulation que j'ai faite tourner ne disposer pas de paramètres réalistes, cependant grâce à elle il a été possible de disposer d'une image intéressante des phénomènes à l'œuvre:
Commentaires sur cette première simulation
- Le corps massif central se déplace de la gauche vers la droite. Sa trajectoire est tracée en jaune.
- Les trajectoires tracées en rouge sont celles des corps qui s’éloignent, en bleu celles des corps qui se rapprochent. Les flèches jaunes représentent les directions privilégiées des petits corps,
- Les nombreux corps détachés sur l’avant (en forme de queue de poisson) n'ont pas encore été "aspirés" par le corps massif,
- Les corps qui arrivent dans l’axe seront pour la plupart éjectés sur les côtés vers l’arrière.
- Sur l'arrière, il existe un espace largement ouvert. Il existe également dans l'axe avant, mais de façon moindre.
- Il existe une jolie “flamme de bougie” autour du corps central et dans son axe de déplacement, ce faisceau en forme de flamme est créé à partir des débris collectés sur l’avant et l’arrière et qui spiralent dans l’axe autour du corps central.
- On observe deux bulles qui gonflent et se propagent. Ce sont des ondes à l'instar d'ondes qui peuvent être créées par un cailloux jeté dans l'eau, ou bien mieux, à l'image d'ondes sonores créées autour d'un véhicule en déplacement.
Un modèle pour le système solaire ?
Ma première réaction a été de me dire : c'est incroyable, l'image obtenue ressemble farouchement à celle du nuage d'Oort avec la ceinture de Kuiper au centre!
Et cela bouleverserait certaines conceptions liées à ce nuage cométaire: ordinairement nous pensons que les corps du nuage d'Oort sont des corps gelés en équilibre gravitationnel autour du soleil. Or, là c'est tout l'inverse: le corps central ne retient pas autour de lui ces petits corps, car ils sont complètement instables !
L'"effet de bulle" est créé par une onde qui se dilate et va se désagréger dès lors qu'elle ne sera plus alimentée. L'onde étant instable, il faut donc que le corps central continue à traverser un milieu suffisamment riche en débris.
Pour observer et faire ressortir cette onde, il faut d'une part que la densité de corps environnante soit suffisante et d'autre part, que la vitesse du corps central ainsi que sa masse aient des valeurs bien particulières.
Mais alors, si c'était le cas... Cela ne voudrait-il pas dire que les défauts de densité cométaire relevée précédemment trouvent leur raison dans la structure particulière du nuage d'Oort autour du système solaire ?
A priori, oui. A savoir:
- Déficit cométaire important sur l'arrière de la direction de déplacement,
- Déficit cométaire moindre sur l'avant de la direction de déplacement,
- Maximum de densité sur 120° d'inclinaison.
Et la première idée qui vient consiste à vérifier un point important à propos de la ceinture de Kuiper: elle présente un trou important dans une direction. Cette direction pourrait-elle correspondre à l'apex du système solaire ? L'apex direction dans laquelle le système solaire se dirige, approximativement L'étoile Vega.
Un modèle pour les nuages protoplanétaires ?
- La longueur d'onde mesurable (double coquille) n'est pas exactement centrée sur l'objet central. Elle est décalée.
- lorsque l'on coupe l'alimentation (le tapis roulant sur lequel l'étoile centrale avance ne l'alimente subitement plus en corps) un profil particulier apparait en forme d'ailes de papillon: